Week (2)

(1) Bridge rectifiers

Circuit diagram

The following circuit diagram is used for this experiment:

Components

The following components are needed for this experiment:

Parts	Id no.	Designation
2	SO5126-5M	Cables
14	SO5124-6F	Bridge, small
1	PS4121-3L	R 4,7k
1	PS4122-1W	C 1μ
4	PS4122-7C	Diode 1N4007

EloTrain Semiconductor Components Practical example: laser diode control

Cable connections

The following cable connections are used in this experiment:

Designation	Symbol	Equipment	Sockets
FG		FUNCTION GENERATOR	0...20Vss / 0,3A
GND		MULTI POWER SUPPLY 60VA / 500 KHz	1 GND

Connect the specified sockets with the corresponding connections on the layout diagram.

EloTrain Semiconductor Components Practical example: laser diode control

Equipment

The following equipment with their corresponding settings are needed for this experiment:

Experiment setup

Now please set up the experiment in the following sequence on the patch panel.

- Bridging plugs, starting at pad 109
- Electronic components
- Measuring instruments and cables
f Please bear in mind: there are no grounding bridges connected between the power supply and the blue ground line of the patch panelt!

EloTrain Semiconductor Components
Practical example: laser diode control

EloTrain Semiconductor Components
Practical example: laser diode control

Experiment procedure and exercises

After completing the experiment the user is able to:

- recognise the output voltage of a bridge rectifier
- assess the ripple due to load.
- recognise the oscillograph of a partially damaged bridge rectifier.
? Now set the oscilloscope to X / Y display mode. Please remove the capacitor from the circuit and enter the oscillscope trace below.

? Set the input voltage to a value of 4 V peak voltage. How high is the peak voltage on the output side of the bridge rectifier?
$U_{p p}=$ \qquad V

8 Set the osciilloscope so that you can get an optimum reading of the values.

Why is the peak voltage on the output side lower than the input voltage?

- The voltage is lower because the signal is time-shifted.
© The voltage is lower because a voltage of approx. 0.7 V drops across each diode.
- The voltage is lower because it is closer to the load.

G Remember that the current at each phase has to pass through two diodes!

EloTrain Semiconductor Components
Practical example: laser diode control

- Now connect the capacitor to the position specified. Enter the oscilloscope trace taken below.

母 Remove one diode from the circuit. Enter the oscilloscope trace recorded below.

What do you observe on the oscillograph?

- The oscillograph trace does not change.
- The oscillograph trace corresponds exactly to the half-wave rectifier.
- The oscillograph trace corresponds roughly to that of the half-wave rectifier, but the output voltage is lower by another 0.7 V , making it a total of 1.4 V lower than that of the half-wave rectifier
? The removal of one diode is comparable to the damage of one component by an excessive load.

(2) Light emitting diode

Experiment procedure

Circuit diagram

The following circuit diagram is used for this experiment:

Components

The following components are used in this experiment:

Parts	Id no.	Designation
2	SO5126-5M	Cables
11	SO5124-6F	Bridge, small
1	PS4121-2N	R 100
1	PS4123-5E	LED green
1	PS4123-5B	LED red
1	PS4122-7C	Diode 1N4007
1	PS4122-7D	Diode Ge AA118
1	PS4122-8A	Z-Diode 4.7 V

Colour	$\frac{\text { Threshold }}{\underline{\text { voltage }}}$
IR	1.3 V
red	$1.6 \mathrm{~V}-1.8$ V
orange	2.0 V
yellow	2.2 V
green	2.4 V
blue	$4 \mathrm{~V}-4.5 \mathrm{~V}$

EloTrain Semiconductor Components Practical example: laser diode control

Cable connections

The following cable connections are used in this experiment:

Designation	Symbol	Equipment	Sockets
5V / 1A		DC Power Supply	$5 \mathrm{~V} / 1 \mathrm{~A}$
GND		MULTI POWER SUPPLY 60VA / 500 KHz	$\perp \text { GND }$

Equipment

The following equipment with their corresponding settings are needed for the experiment:

Equipment	Settings	
$\underline{N}=\underline{\text { a }}$	Black cable	Ground
00.00	Red cable	V Ohm input
	Control knob	V DC
		Please plug in the red and black probes at the specified locations

Experiment set-up

Now please set up the experiment as a testing station in the upper right hand corner of the patch panel. Begin with the following:

- Bridging plugs
- Electronic components
- Measuring instruments and cables

Experiment procedure and exercises

\& Compute the currents based on the voltage across the resistor by applying Ohm's law.
(?) Measure the threshold voltage at the various types of light emitting diodes or diodes. To do this connect the corresponding diode at the specified position and then please enter the voltage drop across the diode and the associated current. Begin with the red light emitting diode.
$\mathrm{U}_{\mathrm{S}}=$ \qquad V
$\mathrm{I}_{\mathrm{S}}=$ \qquad mA

P Now connect the green to the location where the diode was. Measure the voltage and current and enter the values below.
$\mathrm{U}_{\mathrm{S}}=$ \qquad V
$\mathrm{I}_{\mathrm{S}}=$ \qquad mA

Now connect the germanium diode into the diode position. Measure the voltage and current and enter these values below.
$U_{S}=$ \qquad V
$\mathrm{I}_{\mathrm{S}}=$ \qquad mA

Now connect the silicon diode into the diode position. Measure the voltage and current and enter the values below.
$U_{S}=$ \qquad V
$I_{S}=$ \qquad mA
(P) Now connect the zener diode into the diode position. Measure the voltage and current and enter the values below.

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{S}}=\square \mathrm{V} \\
& \mathrm{I}_{\mathrm{S}}=\square \mathrm{mA}
\end{aligned}
$$

